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to Geosynchronous-Earth-Orbit Transfers
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This paper examines a method that can be used to transfer a spacecraft from a circular low Earth orbit (LEO),
inclined to the equator, to a circular geosynchronous Earth orbit (GEO) with no inclination. The principle is to
minimize the propulsive-mass cost for a continuously thrusting vehicle with the capability for multiple on-off
thrusting cycles. The analysis was conducted for a large range of initial accelerations, and it was found that the
method is best used to bridge the gap between very low-thrust transfers and high-thrust, impulsive transfers. The
simulation of a LEO-GEO transfer showed that the results varied from 1% over the optimal cost for a high-thrust
transfer, to 2.5% over the optimai cost for an intermediate-thrust transfer, to 0.3% over the cost of a low-thrust,
spiral transfer. This makes this technique a good first estimate algorithm for the entire range of high- to low-thrust

transfers.
Nomenclature
a = semimajor axis of orbit, km
c = thruster exhaust velocity, m/s
E = specific energy, m?/s?
e = eccentricity of orbit
20 = acceleration at sea level, m/s?
h = first equinoctial element relating eccentricity,
- node, and argument of perigee
Iy = specific impulse, s
i = inclination of orbit, rad
k = second equinoctial element relating

eccentricity, node, and argument of perigee

M = 6 x 3 matrix mapping thrust vector to
differential equations
M = mean anomaly, rad
m(t) = mass of spacecraft at time ¢
m; = mass of spacecraft after ith burn
n = mean motion of orbit, rad/s
p = first equinoctial element relating inclination
and node
q = second equinoctial element relating inclination
and node
T ra, Fp = instantaneous, apogee, and perigee radius, km
T/my = initial thrust-to-mass ratio, N/kg (also m/s?)
to = initial time
ty = final time
X = state vector, (@ h k p q A)T
it = (uy ug u,,)T three-element control vector
v, Vg, Up = instantaneous, apogee, and perigee
velocity, m/s
a, B = pitch and yaw control angle, rad
Av = effective velocity change, m/s
Av;, i = 1,2 = Hohmann-transfer velocity change, m/s
1 during burn arc
8 = .
{ 0 during coast arc
¢ =0 0000 DT
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= mass ratio at time ¢

A = mean longitude, rad

= gravitational parameter, 398,600.8 km®/s?
= total burn-arc time duration, seconds

= right ascension of ascending node, rad

= argument of perigee, rad

Introduction

HE complexities of performing a transfer between a low Earth

orbit (LEO) and a geosynchronous Earth orbit (GEO) are such
that an analytical study is difficult to accomplish. Simplifications and
approximations that are acceptable for some types of problems are
limited by the assumptions made. Analytical approximations work
for many cases, such as very low thrust, where a spiral approxima-
tion can match accurately what truly happens. Likewise, impulsive
approximations (infinite thrust, infinitely small duration) can also
yield valid results. In between, for intermediate-level thrust, neither
spiral approximations nor infinitely-small-thrust-duration approxi-
mations are valid.

The problem to be examined in the course of this paper will be that
of determining an approximate orbit transfer cost for a continuously
thrusting propulsion system (with multiple on—off switching) and
comparing it with the optimal orbit transfer cost. Short of a numerical
optimization process, there is no simple way to determine the best
way to perform a three-dimensional transfer where the orbit plane is
changing at the same time as the shape of the planar orbit. However,
some simplifications and assumptions can be made to allow for an
easier solution procedure. Additionally, a variation of the thrust-to-
mass ratios was studied, and the effects of this parameter on the
mass cost were determined.

In the design phase, sizing of the system occurs, and the value
of having a simple method to determine the near-optimal cost is
very important. The methods presented here are further detailed in
Refs. 1-3.

Analysis

In this section, the natural dynamical equations of motion in an
inverse-square gravitational field, with a perturbation vector in the
form of a propulsive force, are presented. Next, several control laws
are developed, each with a specific goal in mind, on the way to
completing the three-dimensional LEO-GEO transfer.

Several element sets were considered for use in this analysis.
Earth-centered inertial (ECI) elements (x, y, z, X, y, z) are easily
implemented, but show little insight into the behavior of the system.
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Classical elements (a, e, i, 2, w, M) give good physical insight
into the system, but prove difficult for low-eccentricity and low-
inclination orbits. Equinoctial elements* eliminate several of the sin-
gularities of the classical elements and prove useful for the specific
cases to be studied. Because of this, the equinoctial orbital elements
are used for the analysis throughout the course of this paper, with
the occasional use of classical elements to provide physical insight.
The equations of motion are presented in matrix form, as

dx Tré _ .

and the mass flow equation is

dm(t) __T_§
& ¢ @

The elements of the matrix M are derived in Ref. 5, among others,
and are shown in the Appendix. To eliminate the need for a value of
the mass, Eq. (2) is nondimensionalized by introducing the variable

N =—= ©)
m

with the time derivative of 7 being

g 8dm  TS§1
a2 @
dr mgy dt my ¢

The ratio T/m(¢) is replaced in Eq. (1) by (T /mqg)(1/n(t)). This
then gives seven differential equations to be solved.

First Burn Arc in LEO-GEO Transfer: Maximization
of da/dt Control Law

If there are no attitude constraints, a simple control law where
the amount of energy put into the system is maximized can be used.
The energy is found from the simple relation

=
E= 2a ©)

Taking the time derivative of Eq. (5), we get

dE u da
dt ~ 242 dt ©
Thus, maximizing the time rate of change of energy is equivalent to
maximizing the time rate of change of semimajor axis.
If the pitch angle of the transfer is designated by the angle o, and
the yaw angle is designated by the angle 8, the control variables
uy, ug, and u,, in the equinoctial reference frame, become

Uy =cosacosp @)
u, = sina cos B ®)
Uy = Sinﬂ &)

Expanding the first row of Eq. (1) (with the nondimensional trans-
formation of mass), and noting that M3 = 0 (Ref. 5), we have

da T§ 1 .
— = ——— (M1 coswcos f + My, sina cos §) 10)
de mon()

Taking the partial derivative of Eq. (10) with respect to the control
angle «, assuming that cos 8 is not equal to zero, and setting the
partial derivative equal to zero maximizes the time rate of change
in the semimajor axis a [since the minimum value of Eq. (10) is
negative, which means that the semimajor axis is decreasing, which
is the opposite of the desired goal]. Doing this, the control law

becomes
_ M12
o =tan"'{ —= 11
(M“) (11)

For many cases, it is not cost-effective to have only one burn arc for
the transfer. In these cases, a coast arc is inserted between two burn
arcs. The point whetre the coast arc begins is determined from the
integration using the control law for the first burn. When the apogee’
radius found from the integration reaches the apogee radius desired,
the thrust is turned off.

Plane Change Maneuver in a
LEO-GEO Transfer Orbit

As the spacecraft is approaching its first apogee pass of the coast
arc, the second maneuver begins. This maneuver is the plane change
maneuver. When the spacecraft is moving the slowest, then appli-
cation of a plane change maneuver is most efficient. That is why
it is done secondly. In the impulsive case, a plane change and a
recircularization maneuver are combined, but for this study, they
are examined independently. The assumption here is that because
of the finite-duration burn arc (as opposed to an impulsive burn), the
plane change is spread throughout the apogee passage. Additionally,
the apogee passage is designed to coincide with the nodal crossing,
to allow for a final equatorial orbit. The goal is to perform half of the
maneuver before the apogee is reached, and the other half after the
apogee passage. In this simulation, the out-of-plane maneuver was
designed to take place in a similar length of time to what it takes to
recircularize the final orbit. This becomes an iterative process, but
proved to be a workable solution.

The determination of the thrust vector is now addressed. Just as
the pitch angle « controls the eccentricity, the yaw angle 8 controls
the inclination. The relationship between the inclination and the
equinoctial elements, p and g, is

i =2tan" (p? + g%} (12)
Taking the derivative of this equation with respect to time yields

di _ 2(pp+49) (13)
A (P24 g»HI+ p2+q?)

Since the variables p and ¢ are influenced by a change in the yaw
angle 8, the inclination time history does not depend on the yaw an-
gle directly. This is shown by inserting the values of the differential
equations from Eq. (1), as well as the control-angle definitions, into
Eq. (13), which simplifies to

4 2(pMy +gMs)
& (P2 + gD+ PP+ g?)

sin B (14)

To determine the value of 8 that maximizes Eq. (14), take the partial
derivative with respect to the angle 8. Then setting that to result to
zero yields

cosf =0 (15)
Thus
B = £90deg (16)

To determine whether this is a maximum or minimum, and when to
use the positive or negative sign, the second-derivative test yields
the condition that

(pMy3 + qMs3)sin g > 0 an

Checking the sign of p M3 + g Ms; determines whether to use the
positive or negative value found for 8. The plane change maneuver
ends when the desired inclination is reached.

Recircularizing the Transfer Orbit
The last step in reaching a GEQ is to recircularize the orbit. Here,
the goal is to change the perigee radius, while keeping the apogee
radius constant. This can be done by examining the dynamics of the
perigee radius. Since this is a coplanar maneuver, the angle § = 0.
The radius at perigee is found as

rp=a(l—e) (18)
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The time rate of change in perigee radius is
— =—a— ?—3(1 —e) (19)
In addition to changing the perigee radius, the apogee radius must
remain constant. With the apogee radius given as
r.=a(l+e) (20)
and the time derivative set equal to zero,

dr, de da
E——O—a-d—t-i-(l-f-e)a? 21

the time derivative of the semimajor axis can be solved for

da a de
e — 22
dt 1+ed: @2)

The eccentricity is related to the equinoctial elements by
e= (W +k)1 (23)
Taking the time derivative of Eq. (22) yields
de 1 . .

= ~(hh + kk) 24

E? - (h? + k?)1

Inserting Eq. (24) into Eq. (19), the time derivative of perigee radius
with constant apogee radius is

dr,  2a de 2 dn | dk
dt =~ l1+edr (h2+k2)%+h2+k2 dr ds
@5

To obtain the control angle that maximizes the rate of change in
perigee radius and keeps the apogee radius constant, take the partial
derivative of Eq. (25) with respect to the control angle «, and set it
equal zero. That control angle becomes

e+ é
:F(th + kMy; + ae M11>
(26)

2
:i:(th kM + £E8 M12)

o =tan~!

a

To determine whether to use the positive or negative value of o,
the second-derivative test on Eq. (26) shows that, to increase the
perigee while keeping the apogee constant, the constraint

1

cos o

(hMy + kM3;) >0 27

must be satisfied.

When the position in the burn arc approaches the perigee ra-
dius, the perigee radius cannot be changed without increasing the
apogee radius. Therefore, if the ratio of the instantaneous radius to
the perigee radius is less than some threshold, say perhaps 1.01,
the thrust is turned off, and a coast arc is instituted. This allows for
a reasonable transfer time that does not waste propellant trying to
increase the perigee radius when the spacecraft is at perigee. This
situation occurs only when there are multiple perigee passes, which
correspond to the lower-acceleration simulations.

Quality of the Solution
To study the quality of solutions obtained from the simulations, a

metric must be used. For the high-thrust, coplanar transfer, the best .

case (the one that requires the lowest amount of propellant) is the
two-impulse Hohmann transfer. The impulsive change in velocity
for the first burn is computed from the well-known equation

(e 2o T
Avl—_(r,,) {l:l+(ra/rp)] 1} @8)

while the impulsive change in velocity for the second burn is

_(® % _ _2_
o) | )] o

The amount of mass used is

A.
Am,-:m,-_l[l—exp(——l)], i=1,2 (30
gOIsp

Converting to the nondimensional mass parameter, Eq. (30) be-
comes

Avy;
() = n(zi_l)exp( - —”) @31)
gOIsp

For an impulsive inclination change maneuver, the Av require-
ment is

N
Av = 2v sin -2—’ (2)

and to determine the associated mass or mass-parameter costs,
Eg. (30) or (31) can again be used.

For a low-thrust, coplanar transfer, the approximate cost of the
transfer is simply the difference in velocity between the perigee
velocity and the apogee velocity,

Av=1v, — v, =1, [1—(;”-)2} (33)

The mass cost calculated is the solution of Eq. (2), which is a
function of the specific impulse used. However, to eliminate the
dependence on specific impulse, the cost can be changed into an
“effective Av.” Integrating the mass-ratio rate (2) for N burn arcs
yields

N

- T 1
D o0 —n) = ————> "8 —1) (4
i=0

my gOIsp =0

The mass ratio changes only during the burn arc, so Eq. (34) re-
duces to

T 1
n@s) — o) = ——
d ‘ MO gOIsp

. (35)

Solving Eq. (31) for the sum total of burn arcs and the specific-
impulse term yields

1 - -ln Y[(If) —In n(to) (36)

golsp Av

Inserting Eq. (36) into Eq. (35) and solving for the effective Av
gives

Av =

T [ln n(ty) — Inn(to) T] a7

mo | n(ts) —nt)

There have been various results published that give the “optimal”
transfer parameters for a wide range of initial thrust-to-mass ratios.
Each optimal case published has its own merits and limitations,
and therefore none are used to gauge the results presented in this
paper. The Hohmann-transfer approximation is still the best metric
to judge the quality of the results for the high-thrust cases, and the
velocity-difference method provides a good metric for the low-thrust
cases. However, in between, there are very few results published that
provide a metric for the intermediate-thrust cases.
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Results

In this section, the transfers analyzed use initial thrust-to-mass ra-
tios ranging from very high (100,000 N/kg) to very low (0.01 N/kg).
Each transfer is a combination of orbit shape change and orbit plane
change. Although simulations were performed for eachinitial thrust-
to-mass ratio, in factors of 10, detailed results are presented only for
one case, that being an initial thrust-to-mass ratio of 1.0 N/kg. This
is a representative result of the intermediate-thrust regime. Further
examples can be found in Ref. 2.

The simulation begins with a circular orbit, with a radius of
7000 km, inclined to the orbit at 28.5 deg, and ends with a cir-
cular orbit with a radius of approximately 42,241 km, with zero
inclination. For numerical approximations, the initial eccentricity
is set at an arbitary small value, as are the final eccentricity and
inclination. The locations of the spacecraft in the initial and final
orbits are artibrary and are coupled; they are therefore not presented,
except that the initial mean anomaly is chosen so that the first burn
arc ends at an equatorial crossing. :

The cases presented here have three major burn arcs (the sec-
ond and third burn arcs are sequential, and are effectively one burn
arc), and possibly some smaller burn arcs in the recircularization
maneuver (due to the multiple perigee passages for the very low-
thrust cases, as previously discussed). In actual operations, the plane
change and recircularization burns can be combined into one ma-
neuver. This would reduce the impulsive cost by as much as 600 m/s
and would likewise decrease the effective Av for all of the transfers
presented here.

All of the small burn arcs in the recircularization are included in
the effective Av for the recircularization. Table 1 shows the costs
for this simulation for seven orders of magnitude in initial thrust-
to-mass ratio, as well as the three-dimensional impulsive approxi-
mation and the two-dimensional spiral approximation.

For the coplanar spiral transfer, using the initial and final orbital
altitudes, the difference between the velocity at perigee and the ve-
locity at apogee is approximately 4475 m/s, which is 15 m/s greater
than the sum of the cost of the first burn and recircularization burn(s)
for the lowest initial thrust-to-mass ratio.

In Refs. 6 and 7 results were presented on optimal LEO-GEO
transfers. Since the initial conditions are not the same in the two
references and this study, the transfer costs are normalized with
respect to the impulsive costs calculated in each study, and are pre-
sented in Fig. 1.

Next, a set of representative results are presented. This example
case is for an initial thrust-to-mass ratio of 1 N/kg. The time his-
tories for the classical orbital elements and the control angles for a
typical intermediate-thrust simulation are shown in Figs. 2—-6. The
boldface lines represent burn arcs, and the thin lines represent coast
arcs. The semimajor-axis time history of the transfer is presented in
Fig. 2. The duration of the first burn arc is 2239 s, followed by a
coast arc of 18,120 s. The plane change maneuver takes 630 s, and
the transfer is completed with a recircularization maneuver of 888 s.
Figure 3 shows the eccentricity time history. Notice the nearly linear
growth and decay in eccentricity during the first burn arc and in the
recircularization. For higher initial thrust-to-mass ratios, the slope

Table 1 Three-dimensional LEO-GEO transfer cost

Effective  Effective Av  Effective Av for Total

T/my, Av for first, for plane recircularization, effective
N/kg burn m/s change burn, m/s m/s Av, m/s
100,000 2338 810 1420 4568
10,000 2339 811 1419 4569
1,000 2339 814 1419 4572
100 2339 817 1419 4575
10 2341 819 1418 4578
1 2543 853 1352 4748
0.1 3785 1237 856 5878
0.01 . 4307 4549 153 9009
Three-impulse )

approx. 2338 805 1425 4568
Two-dimensional

spiral approx. N/A N/A N/A 4475

Inclination (degrees)
o

8

—*— Current Results
1.03

- - 9 - - Optimal Trajectory

1.025

1,02
1.015
1.01

Ratio of Cost to Impulsive Cost

1.005 1

Initial Thrust-to-Mass Ratio (N/kg)

Fig. 1 Comparison of current study results to those of Refs. 6 and 7.
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Fig. 3 Eccentricity time history.
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Fig. 4 Inclination time history.

on the eccentricity gets larger, and for the impulsive case, the slope
becomes infinite. As the initial thrust-to-mass ratio decreases, the
eccentricity time history shows a periodic variation, with a period
of approximately one orbital revolution, and a much smaller ampli-
tude. For the limiting case of a spiral, the eccentricity remains nearly
equal to zero. Figure 4 shows the inclination time history. As with
the eccentricity, the slope of the inclination change approaches in-
finity with increasing initial thrust-to-mass ratios, and decreases as
the initial thrust-to-mass ratio decreases. Figure 5 shows the time
histories of the apogee, perigee, and instantaneous radius during the
transfer. Lastly, Fig. 6 shows the control-angle time histories. In this
simulation, the in-plane control angle o changes during the in-plane
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Fig. 5 Instantaneous radius, apogee radius, and perigee radius time
histories.
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Fig. 6 Control angles o and 3 time histories.

maneuvers, while the yaw angle g is always equal to zero, except
during the plane change maneuver, when it is equal to 90 deg. Fur-
ther discussion of the time histories of the other cases presented in
Table 1 can be found in Ref. 2.

Conclusions

This paper outlines a methodology to relax the requirement of an
extensive numerical analysis of the optimal orbit transfer trajectory
analysis. Simple yet physically realizable control laws were devel-
oped and applied to a number of initial thrust-to-mass ratios. The
methodology presented here is not intended as a replacement for an
optimization study, but as a complement to the numerical approach.
It is best used for an initial design analysis, and for spacecraft on-
board guidance systems.

The most significant result shown is that this method is applica-
ble to a 7-order-of-magnitude range in initial thrust-to-mass ratios,
which covers the spectrum of all orbit transfers, and can accurately
model the region between high-thrust, impulsive approximations
and low-thrust, spiral approximations.

Appendix: Matrix Elements

The constituents of the matrix in Eq. (1) are reprinted from Refs. 2
and 5. The additional variables are not included in the Nomenclature,
since many are dummy variables and have no physical meaning. The
elements of the matrix M are

2
My = ﬁ[hkb cos F — (1 — h*b) sin F] (A1)
2a 2 .
M = “2[(1 — k*b) cos F — hkbsin F] - (A2)
nr
My =0 (A3)
G {ax X
M= ("a? - "”;) (A4)
G (oY Y
My =— (2 —pp
27 hna ( ok n ) (A3)
M k_qy—ax% (A6)
B=Ghat q q

C—— ——a[(hcosF —ksinF)

ah ak

1 f. ., 3Y Y
Me = —[— 2Y + G(hb— +kb?—):|

1 X _
Mg = _7[ —2X + G<hb—— +kb§>]
na

a? oh ak

S

X =al(1 — h®b) cos F + hkbsin F — k]

Y = afhkbcos F + (1 —k%*b) sin F — h]

. a’n pn s
X= T[hkbcosF— (1 — A%b) sin F]

. a’n ) .
Y = —r—[(l — k“b)cos F — hkb sin F]

G=(1-k®—h?3
1

b:
1+G
r=a(l —kcos F —hsin F)

K=1+P2+q2

)

X 213
9— —a[—(hcosF—ksinF)(b+ b )

ah 1-b
a .
— —Cos F(hb—smF)]
¥

X hkb?

1-b

ak

11+ LsinF(sinF — hb)]
r

Yy 3

E=

h
[(hcosF—ksinF)lkbb

— 1+ 2 cos F(kb — cos F)]
r
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(A7)

(A8)

(A9)

(A10)
(All)

(Al12)

(A13)
(Al4)

(A15)

(A16)

(A17)

(A18)

(A19)
(A20)

(A21)

(A22)
(A23)

(A249)

(A25)
(A26)

(A27)

(A28)

(A29)

(A30)
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.9y k*p?
E{--——a[(hcosF ks1nF)(b+1 b)

+ % sin F(cos F — kb)] (A31)

A=F—ksinF+hcos F (A32)
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